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Abstract

Spectral Clustering is a technique used to group together data points of similar behavior in
order to analyze the overall data. The goal of this project will be to implement a spectral
clustering algorithm on databases in which we will be able to cluster similar images using a
similarity matrix derived from the dataset. We will develop code in order to implement each
step of the algorithm and optimize to efficiently obtain a reasonable clustering of the dataset.

1



Contents

1 Introduction 4

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Approach 8

2.1 Similarity Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Laplacian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Computing the first p eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Clustering Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Clustering Classification: Method 1 . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Clustering Classification: Method 2 . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.3 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Addition of Single Datapoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Implementation 15

4 Database 15

5 Validation 16

5.1 Validation of Computation of Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Validation of k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Validation of Final solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Testing 18

7 Project Schedule/ Milestones 18

8 Deliverables 19

9 Conclusion 19

2



10 Appendix 20

11 References 23

3



1 Introduction

Spectral clustering is clustering technique based on the spectral analysis of a similarity matrix
derived from a given data set. The main goal of spectral clustering or any clustering algorithm is
to implement a procedure that groups objects in a data set to other objects with similar behavior
and have them in different groups from objects that are dissimilar. For this project, we will start
with the MNIST Handwritten digits database in order to implement a clustering algorithm that
will cluster together same digits and be in a different cluster from different digits. After obtaining
various results we will then extend this and apply the spectral clustering algorithm to the Yale
face database. Spectral clustering implements a clustering algorithm such as k-means clustering
on a reduced dimension which allows the formation of tight clusters. Thus given some data point
Xi ∈ Rd, spectral clustering performs a clustering in Rp where p << d. The advantage of spectral
clustering is the simplicity of the algorithm to implement where only the use of standard linear
algebra methods are needed in order to solve the problem efficiently. It also has many application
areas such as machine learning, exploratory data analysis, computer vision and speech processing.

1.1 Definitions

The motivation behind spectral clustering is given from ideas in graph theory. In this section we
define some notation that will be used throughout the motivation section of this report. Define a
graph G = (V,E) as a set of vertices together with a set of edges. We assume G is an undirected
graph with vertex set V = {v1, ..., vn}. We also assume G is unweighted or in other words each edge
has the same weight of 1. Thus the adjacency matrix W is defined to be

W = wij =

{
1, if vi, vj are connected by an edge

0, otherwise
.

Since G is undirected we require that wij = wji and hence gives a symmetric adjacency matrix.
The degree of a vertex vi ∈ V is defined as

di =
n∑

j=1

wij.

This can also be viewed as just the number of edges connected to that vertex. The degree matrix
denoted D is a diagonal matrix where each d1, ..., dn lies on the diagonal. We denote a subset of
vertices A ⊂ V and its complement as Ā = V \ A. For simplicity, we define i ∈ A, as the set of
indices i of vertices vi ∈ A. We also define two ways of measuring the size of a subset A of V .

|A| = number of vertices in A.

and
vol(A) =

∑
i∈A

di.
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|A| measures the size of the subset by the number of vertices, while vol(A) measures the size by the
number of edges. Finally we define the weight between two subsets A,B ∈ V as

W (A,B) =
∑

i∈A,j∈B

wij.

This counts the number of edges connecting the two subsets. One final definition we would like to
introduce in this section is the unnormalized laplacian matrix which is defined as L = D −W .

1.2 Motivation

Clustering is a way to separate data points such that similar points are grouped together, and
are in a different group from ones that are dissimilar. Another way to think about this is from
the viewpoint of graph cuts. Given a graph, we want to partition the vertices such that those
connected by edges with high weights are grouped together and separate from the ones connected
by low weights. Spectral clustering is motivated by approximating a graph partitioning and in
particular approximating the RatioCut or NormalizedCut on a given graph.

One of the most direct ways to partition a graph is to solve the min cut problem. That is, given
a similarity graph, we want to partition the graph into k subsets and hence solve the optimization
problem of minimizing

cut(A1, ..., Ak) : =
1

2

k∑
1

W (Ai, Āi) (1)

over all partitions where W (Ai, Āi) defines the weight between a subset and its complement. In
other words, we want to minimize the number of edges cut in order to partition the graph. This
is very straightforward and easy to solve, in particular for the case when k = 2 by using Karger’s
algorithm which provides an efficient randomized method for finding this cut. However in some
cases it may lead to an unhelpful partition. Consider the example graph below:

1 2

3 4

5

To partition this graph into 2 subsets, the min cut problem would cut through the edge connecting
2 to 5 and give one partition to be relatively smaller than the other. This is not helpful in clustering
since we want each cluster to be relatively large. To account for this, modifications known as the
RatioCut and the normalized cut or NCut can be introduced. For the RatioCut, we want the size
of each partition to be measured by the number of vertices in it. As for the NCut, we would like
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the size of each partition to be measured by the number of edges. Thus we define the RatioCut and
NCut as follows:

RatioCut(A1, ..., Ak) : =
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
(2)

NCut(A1, ..., Ak) : =
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)
(3)

In both cases, the objective functions try to balance out each partition. This makes solving these
versions of the min cut problem NP hard. Spectral clustering allows us to solve relaxed versions of
these problems. For this project, we will be focusing on the relaxed version of the NCut problem
to solve the clustering problem.

We will start with approximating the NCut problem for the case where k = 2. Relaxing the min
NCut problem will derive the motivation behind normalized spectral clustering which we will define
later in this section. For the case k = 2, we want to solve the optimization problem of minimizing

NCut(A, Ā) =
W (A, Ā)

vol(A)
+
W (A, Ā)

vol(Ā)
=
W (A, Ā)(vol(Ā) + vol(A))

vol(A)vol(Ā)
(4)

over both partitions. We define a cluster indicator vector f by

f(vi) = fi =


√

vol(Ā)
vol(A)

, if vi ∈ A

−
√

vol(A)

vol(Ā)
, if vi ∈ Ā

(5)

The cluster indicator vector is giving some value depending on whether the vertex lies in A or Ā.
Thus by computing fTLf and fTDf we obtain the following:

fTLf =
∑

wij(fi − fj)2 = W (A, Ā)

(√
vol(Ā)

vol(A)
+

√
vol(A)

vol(Ā)

)2

= W (A, Ā)
(vol(Ā) + vol(A))2

vol(A)vol(Ā)

(6)

fTDf =
∑

dif
2
i =

∑
i∈A

di

(√
vol(Ā)

vol(A)

)2

+
∑
j∈Ā

dj

(√
vol(A)

vol(Ā)

)2

= vol(Ā) + vol(A) (7)

Note that the ratio of the two gives us the NCut problem we want to minimize. Thus minimizing
the NCut problem is equivalent to

minimize NCut(A, Ā) =
fTLf

fTDf

subject to fi =


√

vol(Ā)
vol(A)

, if vi ∈ A

−
√

vol(A)

vol(Ā)
, if vi ∈ Ā

(8)
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The relaxation problem is given by

minimize
f∈Rn

fTLf

fTDf

subject to fTD1 = 0

(9)

where f is allowed to take on real values. It can be shown the relaxation problem is a form of the
Rayleigh-Ritz quotient. Since we have the constraint that fTD1 = 0 we want a solution that will
not be the constant vector 1 of all ones which is the eigenvector of the smallest eigenvalue of 0.
Thus we want to find the eigenvector corresponding the the second smallest eigenvalue. Substituting
g = D1/2f the problem becomes

minimize
g∈Rn

gT (D−1/2LD−1/2)g

gTg

subject to g ⊥ D1/21

(10)

where D1/21 is the first eigenvector of Lsym = D−1/2LD−1/2 which corresponds to the lowest eigen-
value of 0. Letting U = [u1u2 . . . un] be the matrix whose columns are the orthonormal eigenvectors
of Lsym. If we only consider vectors g that are orthogonal to u1 and since L is non negative, then

gTLsymg =
n∑

i=1

λi|(UTx)i|2 =
n∑

i=1

λi|uTi x|2 =
n∑

i=2

λi|uTi x|2

This gives a non negative linear combination of λ2, λ3 . . . , λn, thus

gTLsymg =
n∑

i=2

λi|uTi x|2 ≥ λ2

n∑
i=2

|uTi x|2 = λ2

n∑
i=2

|(UTx)i|2 = λ2g
Tg

provided that g is orthogonal to the first column of U . This inequality becomes equality if we choose
g = u2. Therefore

min
g 6=0

g⊥D1/21

gTLsymg

gTg
= min

gT g=1
g⊥D1/21

gTLsymg = λ2

which gives the second smallest eigenvalue and g is the corresponding eigenvector. In general
applying the Courant-Fisher theorem, we can find the p smallest eigenvalues and their corresponding
eigenvectors.

Theorem 1 (Courant-Fischer Theorem). Given A a Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn−1 ≤ λn, let k be a given integer with 1 ≤ k ≤ n, and let wi ∈ Cn, then

max
w1,w2,...,wk−1

min
x 6=0,x∈Cn

x⊥w1,w2,...,wk−1

xTAx

xTx
= λk
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We only included part of the theorem which finds the smallest eigenvalue and corresponding eigen-
vector under some given constraints. For the complete statement and proof of the Courant-Fischer
theorem, see appendix A.

This can be extended to the general case for k > 2. The outline for this proof comes from the paper
by Von Luxberg [1]. In this case, we define a cluster indicator vector fk by

fj(vi) = fj(i) =

{
1√

vol(Aj)
, if vi ∈ Aj

0, otherwise
(11)

We define the matrix F as the matrix whose columns are the p indicator vectors. Then, fT
i fj = 0,

fT
i Dfi = 1 and fT

i Lfi = cut(Ai,Āi)
vol(Ai)

. Thus the NCut optimization problem becomes

minimize
A1,...,Ak

Tr(F TLF )

subject to F TDF = I

F defined in (11)

(12)

Relaxing the second constraint and substituting T = D1/2F gives of the relaxation problem of

minimize
T∈Rn×p

Tr(T TD−1/2LD−1/2T )

subject to T TT = I
(13)

This is a standard trace minimization problem in which the solution T is a matrix whose columns
are the first p eigenvectors of Lsym. The proof of the standard trace minimization problem will be
provided in appendix A. Lsym is the normalized laplacian matrix defined as

Lsym = D−1/2LD−1/2. (14)

Thus the first p eigenvectors will solve the relaxed version of the min NCut problem.

2 Approach

The following subsections outline the various steps of the project. We will start by developing code
to produce a similarity graph from our database. Given the similarity graph we will compute the
normalized laplacian matrix. From there we will compute the first p eigenvectors of the laplacian
and place in a matrix, perform a dimension reduction on the matrix of eigenvectors and use a
clustering algorithm on the reduced dimension in order to cluster the data points.

2.1 Similarity Graph

Given the data set X1, ..., Xn and a notion of “similar”, a similarity graph is a graph where Xi and
Xj have an edge between them if they are considered “similar”. Consider the Gaussian similarity
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function which is defined as s(Xi, Xj) = e
−||Xi−Xj ||

2

2σ2 where σ is a parameter to be determined which
varies depending on the dataset used. We used the Gaussian similarity function to define the
similarity between any two data points. We then defined a threshold ε that determined if two data
points are similar enough. If s(Xi, Xj) > ε we considered them similar and connected an edge
between Xi and Xj. For the project, choosing the best ε was not immediately apparent. In order
to choose the best parameters, we randomly select a subset of images from our training set and
implemented the algorithm with varied parameters. The parameters that gave the best clustering
results are the ones we used for other testing purposes. Note that since each Xi ∈ R28×28, to
compute the distance between any two points we use the `2 norm for matrixes in this case given as

||Xi −Xj||22 =
28∑
k=1

28∑
l=1

(Xi(k, l)−Xj(k, l))
2

2.2 Laplacian Matrix

Recall that the unnormalized laplacian matrix is defined as L = D−W . The normalized laplacian
is

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2. (15)

The eigenvectors of the normalized laplacian are directly related to the indicator vectors in the
NCut problem. Thus finding the p first eigenvectors of the normalized laplacian will allow us to
reduce the dimension while still capturing the similarity of the data points and can clustering into
k partitions. Recall W is the adjacency matrix. Given the Gaussian similarity function, W and D
are defined as

W = (wij)1≤i,j≤n, wij =

{
1, if s(Xi, Xj) > ε

0, otherwise
(16)

D = (dij)1≤i,j≤n, dij =
n∑

j=1

wij (17)

which was used in computing the normalized laplacian. Our computation of the normalized laplacian
matrix was validated by verification of one of the known eigenvectors. As described above in the
motivation section of this report, L1 = 0 gives an eigenvalue of 0 corresponding to the eigenvector
1. This is equivalent to LsymD

1/21 = 0 or the normalized laplacian having an eigenvector of D1/21.
Thus after computing the normalized laplacian in Matlab, it was verified by multiplying Lsym by
its eigenvector of D1/21 to obtain a value of zero (its corresponding eigenvalue).

2.3 Computing the first p eigenvectors

We then computed the first p eigenvectors of the normalized laplacian matrix. We used an iterative
method called the Power Method to find them. Let B = D−1/2WD−1/2.
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The largest eigenvalue of B corresponds to the smallest eigenvalue of Lsym. Hence this gives us
our first eigenvector that we are looking for. To find the next eigenvalues, we implemented the
power method with deflation. But when using the power method on any symmetric matrix, the
eigenvalues found are the largest ones in magnitude. Since we only want the first p largest we
modify our B matrix to make B positive semidefinite which will shift all the eigenvalues to ensure
they are positive and we then find the first p of them. To make B a positive semidefinite matrix,
we create a new B, denoted Bmod, such that

Bmod = B + µI

This makes Bmod diagonally dominant and hence positive semidefinite. Letting µ = the largest row
sum of B, this gave us Bmod which is now a positive semidefinite matrix and we find its largest p
eigenvalues and corresponding eigenvectors.

So we actually run the power method on Bmod to obtain the first (eigenvalue, eigenvector) pair and
use the deflation algorithm in order to find the first nontrivial p of them. Below are outlines of the
power method and deflation algorithms.

Power Method Algorithm on Matrix Bmod

Start with an initial nonzero vector, v0.Set tolerance, max iteration
and iteration= 1
Repeat
v0 = Bmod ∗ v0;
v0 = v0/norm(v0, 2);
lambda= v′0 ∗Bmod ∗ v0;
converged = (norm(Bmod ∗ v0− lambda∗v0,2) < tol);
iter=iter+1;
if iter >= maxiter
warning(’Did Not Converge’)
Until Converged

Deflation Algorithm for finding the first p eigenvalues
Initialize d = length(Bmod); V = zeros(d,p); lambda=zeros(p,1);
for j from 1, . . . , p
[lambda(j), V(:,j)] = power-method(Bmod,v0);
Bmod = Bmod− lambda(j)∗V (:, j) ∗ V (:, j)′;

v0 = v0 − v0·V (:,j)
v0·v0 ∗ v0

end

where λj, vj are the previous eigenvalues and eigenvectors found respectively. Initially v0 is a
randomize vector to approximate the first eigenvector. Then in the deflation algorithm, the jth

eigenvector is approximated using the previous initial vector v0 with the projection of the previous
eigenvectors subtracted from it to obtain the new v0. This removes the orthogonal components of
the previous eigenvectors found.
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The speed of convergence of this method depends on the size of the eigengap γk = |λk − λk+1|.
[1]. The larger the eigengap, the faster the convergence of the algorithm in computing the first p
eigenvectors.

We then put these first p eigenvectors into a matrix and normalize the rows. Let T ∈ Rn×p be the
eigenvector matrix with rows having norm 1. Set

ti,j =
vi,j

(
∑

s v
2
i,s)

1/2

Row Normalize on Matrix V
Initialize T =zeros(N, p)
for j from 1, . . . , N
rowSum=sum(V (i, :)2);
T (i, :) = V (i, :)/(rowSum1/2);
end

This will transforms our matrix V consisting of the first p eigenvectors to a new matrix T .
v11 v12 v13 . . . v1p
...

...
...

. . .
...

vi1 vi2 vi3 . . . vip
...

...
...

. . .
...

vn1 vn2 vn3 . . . vnp

⇒

t11 t12 t13 . . . t1p
...

...
...

. . .
...

ti1 ti2 ti3 . . . tip
...

...
...

. . .
...

tn1 tn2 tn3 . . . tnp


We will then project the eigenvectors onto new space. Let yi ∈ Rp be a vector from the ith row of
T . This will form the new matrix Y = T T where each yi vector is a column of Y .


t11 t12 t13 . . . t1p
...

...
...

. . .
...

ti1 ti2 ti3 . . . tip
...

...
...

. . .
...

tn1 tn2 tn3 . . . tnp

⇒ yi =


ti1
ti2
...
tip


We then performed a clustering algorithm on our new matrix Y of a reduced dimension.

2.4 Clustering

We perform a standard k-means clustering algorithm on the new set of vectors of reduced dimension.
Since each yi just corresponds to a row in matrix T , we use k-means clustering in order to cluster
the rows of our matrix T .

11



Clustering Algorithm for clustering into k clusters
Randomly select k cluster centroids, zj
Repeat
Calculate the distance between each yi and zj
Assign the data point to the closest centroid
Recalculate centroids and distances from data points to new centroids
If no data point was reassigned then stop, else reassign data points
end

Finally, we assigned the original point Xi to cluster j if and only if row i of the matrix Y was
assigned to cluster j.

2.5 Clustering Classification

After using k-means on the reduced dimension, this classifies each image to a particular cluster.
Since it’s not necessarily true that cluster 1 corresponds to digit 0, we developed two methods in
order to best classify which cluster belongs to which digit. Both methods compute the error rate by
computing number of incorrect digits in the cluster

total number of digits in the cluster
. We then did a comparison to determine which method

had the lower error rate as well as the fastest computational time.

2.5.1 Clustering Classification: Method 1

• We compute the distance of 10 fixed images to every image in a given cluster.

• The cluster with the smallest distance to that image is classified as that image.

2.5.2 Clustering Classification: Method 2

• We look at all possible permutations of cluster classifications and choose the one with the
smallest classification error rate.

• For example define π =

[
0 1 2 3 4 5 6 7 8 9
7 2 6 8 4 9 1 0 5 3

]
as one possible permutation for clus-

ter classification

• Count the number of correct matches and repeat for all permutations

2.5.3 Comparison of Methods

Time in seconds for Method 1 and Method 2 for various number of digits and images per digit. Let
d represent the number of digits used in the comparison and N represent the number of images per
digit used in the comparison.

12



d=5,N=500 d=5,N=1000 d=10,N=500 d=10,N=1000
M1 1.447s 2.712s 10.915s 21.945s
M2 0.008s 0.021s 623.524s 1316.550s

Classification Error from Method 1 and Method 2 for d=5 and N=1000

Index 1 2 3 4 5
Cluster Class 2 3 4 1 0

M1 26% 66% 16% 61% 80%
M2 26% 66% 16% 61% 80%

Classification Error from Method 1 and Method 2 for d=10 and N=1000

Index 1 2 3 4 5 6 7 8 9 10
Class 8 1 7 0 2 9 5 3 4 6
M1 17% 64% 18% 87% 11% 18% 05% 03% 0% 12%

Class 3 1 7 0 5 4 8 6 9 2
M2 43% 64% 18% 87% 21% 31% 04% 27% 03% 14%

Overall method two gave better results than did method one. However, when implementing on the
large testing set takes a longer time using method two than method one.

2.6 Addition of Single Datapoint

In implementing the spectral clustering algorithm, the question came up of how to determine the
correct cluster of a single digit, say Xnew, without prior knowledge of what that digit is. There is
a standard method known as the Nystrom Method for out of sample extensions. The goal of this
method is to use the similarity kernel function, denoted as K(X, Y ) in order to embed the new data
point X in the reduced dimension.

Proposition 2. Let K(xi, xj) denote a kernel function of Lsym such that Lsym(i, j) = K(xi, xj).
Let (vk, λk) be an (eigenvector,eigenvalue) pair that solves Lsymvk = λkvk. Let (fk, λ

′
k) be an (eigen-

function,eigenvalue) pair that solves Kfk = λ′kfk. Then yk(x) is the embedding associated with a
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new datapoint x.

λ′k =
1

n
λk

fk(x) =

√
n

λk

n∑
i=1

vikK(x, xj)

fk(xi) =
√

(n)vik

yk(x) =
fk(x)√
n

=
1

λk

n∑
i=1

vikK(x, xj)

yk(xi) = yik

where n is the number of points used. [6]

Being that we used the Gaussian similarity function to define our similarity matrix and set a
threshold that changed our matrix to 0’s and 1’s, the kernel function is not so easily defined. So
instead in the method described below we did not use a similarity kernel function but rather just
projected our new image onto the reduced dimension.

• Create a similarity vector, denoted as Xsim of 0’s and 1’s to measure the similarity between
the new digit and the previous digits tested on.

• Normalize the similarity vector by multiplying it by D−1/2 similar to how we computed the
normalized laplacian matrix

• Compute the projection of the similarity vector onto the eigenvectors of the normalized lapla-
cian matrix and normalize to 1. This projection is done by computing the inner product of
Xsim with each of the eigenvectors. This will give a new vector, denoted as Csim that lives in
Rp where again p is the number of eigenvectors found.

• Find the centroid that is closest to Csim by calculating the distance between Csim and each
centroid and finding the minimum.

• Finally, using the cluster classification, assign the new digit Xnew to its correct digit.

Below is a table of error percentage and run time that was obtained by using this method to add a
single new datapoint and averaged over 100 times of implementing.

Error Runtime
Averaged over 100 digits 61% 12.6sec

To create Xsim we measured the similarity between Xnew and 2000 previously tested images. If we
implemented this measuring the similarity between Xnew and more images already tested on, we
would obtain a lower error.
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3 Implementation

The spectral clustering algorithm outlined above was implemented in the programming language
Matlab R2016b. This is the programming language that we are most comfortable with using with
the most prior knowledge of this language. This was ran on a personal laptop, a Macbook Pro
which is a 2.5 GHz Intel Core processor and has 4 GB of Memory. For large subsets (ie greater
than 20,000 images) the code was also ran on a more powerful desktop computer located in the
Norbert Wiener Center. The desktop computer has 128GB of memory and was implemented on
Matlab 2015b.

4 Database

The main database used was the MNIST Handwritten digits database. The database includes a
training set of 60,000 images and a testing set of 10,000 images. We used various subsets of the
training set of 60,000 images in order to find the best parameters that gave the smallest clustering
error. Each image is of size 28× 28 pixels. We denote an image Xi ∈ R28×28. A variety of methods
have been tested using this database. For this project, we used these images for analyzing the
spectral clustering algorithm to see if we can cluster the images such that same digits are clustered
together despite the different handwritings. In our code, each image is read into a 3 array called
image(n1, n2, N) where n1,n2 represents the size of the image, and N represents its number in the
entire list of training or testing sets. Thus N ranges from 1− 60, 000. The link below can be used
to view this database.

http://yann.lecun.com/exdb/mnist/

The following results are based on using subsets of size N = 1000, N = 2000, N = 10000, and
N = 20000. We used σ = 2000 and varied ε in order to produce the smallest error. We also could
have kept ε a constant and varied σ to obtain the smallest error but we believe it would have resulted
in similar results. We used ε varying between 0.30 and 0.48 depending on the dataset size, p = 3
(first 3 nontrivial eigenvectors), and k=10 (number of clusters).Error=Number of incorrect digits in cluster

Total number of digits in cluster

For N=1000: ε = 0.47, cluster classification, classification error and total error

Digit 0 1 2 3 4 5 6 7 8 9
Cluster Class 9 4 5 6 1 10 3 7 8 2

Cluster class 1 2 3 4 5 6 7 8 9 10
Error 35% 80% 22% 43% 51% 50% 61% 73% 13% 91%

Overall Error=Total number of incorrect digits
Total number of digits

= 53%

For N=2000: ε = 0.343, cluster classification, classification error and total error
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Digit 0 1 2 3 4 5 6 7 8 9
Cluster Class 6 3 9 5 4 10 2 1 8 7

Cluster class 1 2 3 4 5 6 7 8 9 10
Error 50% 44% 31% 60% 51% 19% 68% 64% 54% 71%

Overall Error=Total number of incorrect digits
Total number of digits

= 50%

For N=10000: ε = .3405, cluster classification, classification error and total error

Digit 0 1 2 3 4 5 6 7 8 9
Cluster Class 3 7 6 9 2 10 4 1 8 5

Cluster class 1 2 3 4 5 6 7 8 9 10
Error 41% 65% 12% 47% 80% 44% 28% 68% 49% 89%

Overall Error=Total number of incorrect digits
Total number of digits

= 49%

For N=20000:ε = .34 Cluster classification, classification error and total error

Digit 0 1 2 3 4 5 6 7 8 9
Cluster Class 8 1 3 10 6 7 2 5 9 4

Cluster class 1 2 3 4 5 6 7 8 9 10
Error 41% 27% 49% 47% 40% 60% 87% 12% 49% 48%

Overall Error=Total number of incorrect digits
Total number of digits

= 48%

5 Validation

There are various phases in which we can validate various steps of the algorithm.

5.1 Validation of Computation of Eigenvectors

We compared our results from the power method algorithm with the eigenvectors computed by
using the Matlab command eigs(Lsym). Figures 1 and 2 (located at the end of the report) show the
first 5 eigenvalues found and a comparison to the ones found using the built in Matlab function eigs
on 2000 and 10000 images respectively.
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The residual between the first 5 eigenvectors found from the power method and the eigs function
were also computed. Both the graph and tables are shown for first a set of 2,000 images and then
a set of 10,000 images.

λ1 λ2 λ3 λ4 λ5

r 4.24E-15 2.40E-15 1.82E-13 2.65E-12 1.38E-08

λ1 λ2 λ3 λ4 λ5

r 9.17E-15 2.64E-15 7.94E-14 8.44E-12 1.08E-08

Here, r = ||Bmod/λi ∗ vi − Bmod/λ̂i ∗ v̂i||2 where vi, λi comes from using the power method and
v̂i, λ̂i comes from the eigs function and 1 ≤ i ≤ 5 corresponding to the first 5 eigenvalues. In both
cases the first few eigenvalues found from the power method give a reasonable approximation to the
ones found from the Matlab command. After the fifth eigenvector and so on, the residuals found
start to get larger mostly because of rounding errors. The deflation algorithm relies on available
eigenvalues and eigenvectors already found. Since the previous eigenvalues and eigenvectors were
estimates that came from the power method, the new approximated matrix is subject to round off
errors and thus the error can increase as more eigenvectors are found. However, since we will only
be using the first 3 or 4 non-trivial eigenvectors more specifically v2, v3, v4 and possibly v5, with
pretty good confidence the power method can still be applied to larger subsets in the training set
of 60,000 images and a good approximation to those eigenvalues and eigenvectors can be used.

5.2 Validation of k-means clustering

We validated the k-means clustering algorithm on a well known clustered set. Since we are able
to repeat the initial randomize starting centroids, we can repeat the algorithm on say the Swiss
Roll dataset to obtain a “good” clustering. Figures 3 and 4 show the Swiss Roll dataset in 2 and 3
dimensions. Figures 5 and 6 show the clustering of the Swiss Roll dataset into four clusters using
matlab’s built in k-means and our implementation of the k-means algorithm, respectively.

5.3 Validation of Final solution

We visually validated the solution of the algorithm by displaying the clusters and seeing if similar
images are grouped together as predicted. Figures 7,8 and 9 are the visual outputs of a subset of
each of the clusters.
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6 Testing

For more testing purposes we implemented the spectral clustering algorithm on another database.
We used the public database supplied by Yale University called “The Yale Face Database”. This
database includes 165 grayscale images of 15 individuals. There are 11 images per individual, each
having a different facial expression or configuration which are center-light, with glasses, happy,
left-light, without glasses, normal, right-light, sad, sleepy, surprised, and one eye winked. Each of
these images are of size 32 × 32 pixels. The objective in analyzing spectral clustering using this
database was to see if the same individual can be clustered with all of his images despite the different
configurations. The following results are obtained by using a random subset of the database using
10 individuals and 5 images per individual. The link below can be used to view this database.

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

When testing on this database, we expected the algorithm to give similar results. Ultimately the
algorithm should cluster similar faces together and put in different clusters of faces that were dis-
similar and hopefully have around the same error rate (or less) than the results from the MNIST
digits database. Below are the results using σ = 2000, ε = .465, p = 4 and k = 10, the best cluster
classification, a table of error for each cluster classification. Figures 10,11 and 12 show visual vali-
dation of results. We see that we get a little over half of the images getting put into the incorrect
cluster. I believe this may be due to the size of the dataset as well as the various lighting. As we saw
from the MNIST digits database, the more images we used for clustering, the better our clustering
results became. Being that we only used a total of 50 images, I believe extending this to more
images can result in a lower overall error. Also being that we are measuring the distance between
two grayscale images it may seem that images that have poor lighting or are darker may seem more
closely related to images that are brighter. With more time I could try implementing again so that
each image has about the same lighting intensity and hence would probably give much better results.

Image 1 2 3 4 5 6 7 8 9 10
Cluster Class 5 6 8 4 2 7 9 10 3 1

Error=Number of incorrect faces in cluster
Total number of faces in cluster

Cluster class 1 2 3 4 5 6 7 8 9 10
Error 71% 33% 60% 83% 0% 66% 44% 40% 60% 66%

Overall Error=Total number of incorrect faces
Total number of faces

= 54%

7 Project Schedule/ Milestones

We have split the project into different phases and allocated time to complete each phase.
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• End of October/ Early November
Develop code to generate a Similarity Graph and Normalized Laplacian matrix from the
MNIST database. This will include testing for the correct parameter σ in the Gaussian
Similarity function as described previously.

• End of November/ Early December
Compute first p eigenvectors of the Normalized Laplacian matrix as well as validate this. Also
prepare for the mid-year presentation and report.

• February
Normalize the rows of matrix of eigenvectors and perform dimension reduction.

• March/April
Cluster the points using k-means clustering algorithm and validate this step.

• End of Spring semester: Implement entire algorithm, optimize and obtain final results as well
as prepare for the final presentation and final report.

8 Deliverables

The deliverables for this project are the MNIST digits database and Yale face database with the code
that delivers this. We will deliver code that implements the spectral clustering algorithm and code
that was use for testing and validations at various steps. If time allows this code will be optimized
for effective performance. We will also deliver reports at the various periods throughout the course
as requested which covers the approach, implementation, validation, testing and milestones of the
project. Finally we will give the various presentations throughout the course that introduce the
project, give a mid-year update and a final presentation and this report of results found.

9 Conclusion

Spectral clustering is a well known clustering technique and gives relatively good clusters depending
on the size of the dataset. The more images used, the better the results tend to be as seen on the
two databases I have implemented the algorithm on. The benefit of using this clustering algorithm
as opposed to another is the ease of implementation and the reduced dimension that the actual
clustering takes place. However it is not as advanced as some of the other clustering algorithms
such as Hierarchical Clustering.[7] Overall my implementation of the spectral clustering algorithm
could possibly be improved based on the normalized laplacian and/or the similarity graph used and
well as increading the number of eigenvectors used for the clustering. [1]
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10 Appendix

Theorem (Courant-Fischer Theorem ). Given A a Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn−1 ≤ λn, let k be a given integer with 1 ≤ k ≤ n, and let wi ∈ Cn, then

max
w1,w2,...,wk−1

min
x 6=0,x∈Cn

x⊥w1,w2,...,wk−1

xTAx

xTx
= λk

and

min
w1,w2,...,wn−k

max
x 6=0,x∈Cn

x⊥w1,w2,...,wn−k

xTAx

xTx
= λk

[5.]

Proof. Since A is Hermitian, there exist a unitary matrix U ∈ Mn such that A = UΛUT with
Λ = diag(λ1, λ2, ..., λn). Let 1 ≤ k ≤ n. If x 6= 0 then

xTAx

xTx
=

(UTx)TΛ(UTx)

xTx
=

(UTx)TΛ(UTx)

(UTx)T (UTx)

and {UTx|x ∈ Cn and x 6= 0} = {y ∈ Cn|y 6= 0}. Thus if w1, w2, ..., wk−1 ∈ Cn are given, then

inf
x 6=0

x⊥w1,w2,...,wk−1

xTAx

xTx
= inf

y 6=0
y⊥UTw1,U

T w2,...,U
T wk−1

yTΛy

yTy

= inf
yT y=1

y⊥UTw1,U
T w2,...,U

T wk−1

n∑
i=1

λi|yi|2

≥ inf
yy=1

y⊥UTw1,U
T w2,...,U

T wk−1

yk=yk+1=...=yn=0

n∑
i=1

λi|yi|2

= inf
|y1|2+|y2|2+...+|yk−1|2=1
y⊥UTw1,U

T w2,...,U
T wk−1

k∑
i=1

λi|yi|2 ≥ λk

This shows that

inf
x 6=0

x⊥w1,w2,...,wk−1

xTAx

xTx
≥ λk

for any k − 1 vectors. But equality will hold for one choice of the vectors which is wi = un−i+k,
where U = [u1 . . . un]. Thus,

sup
w1,...,wk−1

inf
x 6=0

x⊥w1,w2,...,wk−1

xTAx

xTx
= λk

and we can replace inf and sup with min and max, respectfully, since the extremum is achieved.
The proof for the second case is similar.
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Theorem (Min Trace Problem). Let A be Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤
λn−1 ≤ λn, then

minimize
X∈Rn×k

Tr(XTAX) =
k∑
1

λi

subject to XTX = I

(18)

and the columns of X contain the corresponding eigenvectors of the k smallest eigenvalues of A.[1.]

Proof. Let h(X) = tr(XTAX). Then

h(X + Y )− h(X) = tr((XT + Y T )A(X + Y ))− tr(XTAX)

= tr(XTAX) + tr(XTAY ) + tr(Y TAX) + tr(Y TAY )− tr(XTAX)

= 2tr(XTAY ) + tr(Y TAY )

Since

lim||Y ||→0
tr(Y TAY )

||Y ||
= 0

and

lim||Y ||→0
h(X + Y )− h(X)− tr(Y TAY )

||Y ||
= 0

then
DXh(Y ) = 2tr(XTAY )

So the lagrange problem to be solved is

DXh(Y ) = XTΛ

hence
2XTA = 2XTΛ

⇒ AX = ΛX

which gives

Ax1 = λ1x1

Ax2 = λ2x2

...

Axk = λkxk

Thus the solution X of the eigenvalue problem is the matrix whose columns are the eigenvectors of
the corresponding eigenvalues of A.
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Theorem (Diagonally dominant matrix). A Hermitian diagonally dominant matrix A with real
non-negative diagonal entries is positive semidefinite. [5.]

Proof. Let A be a Hermitian diagonally dominant matrix with real nonnegative diagonal entries;
then its eigenvalues are real and, by Gershgorin’s circle theorem, for each eigenvalue an index i
exists such that:

λ ∈
[
aii −

∑
j 6=i

|aij|, aii +
∑
j 6=i

|aij|
]

which implies, by definition of diagonally dominance, λ ≥ 0 and thus A is positive semidefinite.
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Figure 1: Comparison of eigenvalues found on sample of 2,000 images

Figure 2: Comparison of eigenvalues found on sample of 10,000 images
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Figure 3: Swiss roll Dataset in 2-dimensions

Figure 4: Swiss roll Dataset in 3-dimension
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Figure 5: K means clustering via Matlab

Figure 6: K means clustering via myKMeans
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Figure 7: Cluster of digit ’0’

Figure 8: Cluster of digit ’7’

Figure 9: Cluster of digit ’3’
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Figure 10: Cluster 5 of face database

Figure 11: Cluster 4 of face database

Figure 12: Cluster 2 of face database
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